If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15n^2-13n+2=0
a = 15; b = -13; c = +2;
Δ = b2-4ac
Δ = -132-4·15·2
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-7}{2*15}=\frac{6}{30} =1/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+7}{2*15}=\frac{20}{30} =2/3 $
| 3k-k+5=2k+5 | | 9x+1+5x-1=14 | | -5(n+1)=-6(4+4n) | | -13.9=w/5-1.4 | | 9x+1+5x-1=13 | | 2h-5-5h=7h | | 0=-x+16 | | 11+x=3x+1 | | 1=x*0.95 | | 3d=d-5d+35 | | x+13+x+2=13 | | x+10+x+3=11 | | 19^x=0 | | 10=-4(1+5k)+6(6k-3) | | 3(y-7)=(5-8y)-12 | | 6x+108=246 | | 6b+2=4b | | y-1.82=8.72 | | x3+2005x+2006=0 | | 2a-10=3a | | x+77=117 | | 6p-8p=4(6+p)+3(7p+1) | | x^2-2x-0.91=0 | | 32=2x+2(3x-4) | | x^2+2x-0.91=0 | | −7x2+5=10 | | 6x(5x-2)+12=30 | | 9y-24=3y | | 2x+24+x+18=14+11 | | 7x|10=6 | | 10+2+x+5=5x-3 | | 7x*10=6 |